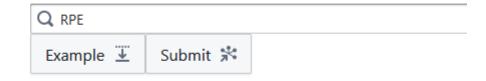

Development of Workflow using **Plyabook Workflow Builder Tool** for RPE as the seed gene to Demonstrate use of **MetNet**

Use Case 11 – RPE related proteins/metabolites across DCCs (MW)



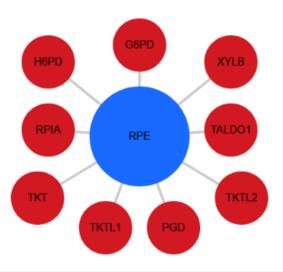
Playbook Workflow Builder

♠-코-潔-판

Gene Input

The workflow starts with selecting a search term.

Fetch StringDB PPI


The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set

Species: hsa						
Taxonomy ID: 9606						
SYMBOL A SYMBOL B Score						
RPE	RPIA	0.998				
RPE	TKT	0.997				
RPE	XYLB	0.995				
RPE	PGD	0.994				
RPE	TKTL2	0.991				
RPE	TKTL1	0.986				
RPE	TALDO1	0.981				
RPE	G6PD	0.945				
RPE	H6PD	0.943				

Reformat StringDB PPI for plotting

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set

Given StringDB PPI, generate the list of nodes (GeneSet)

The workflow starts with selecting RPE as the search term. For the given gene

ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given

StringDB PPI, the list of nodes (GeneSet) is generated.

1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set

	Gene		
1	RPE		
2	RPIA		
3	ТКТ		
4	XYLB		
5	PGD		
6	TKTL2		
7	TKTL1		
8	TALDO1		
9	G6PD		
10	H6PD		

Filter

🝸 Filter string...

Output Type

Gene

Signature
 [1 card]

[1 card]

 $\mathbb{X} \equiv \xrightarrow{} & \xrightarrow{} & \xrightarrow{} & \xrightarrow{} & \xrightarrow{} & \mathbb{X}$ **Enricht Enrichment Analysis** Perform Enrichment Analysis

$[\boxtimes \equiv] \rightarrow f_{\times} \rightarrow \blacksquare$ Assemble GMT from Genesets Group multiple independently generated gene sets into a single GMT

□ A ■ A ■ A ■
 □ A ■ A ■
 □ A ■ A ■
 □ A ■ A ■
 □ A ■ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■
 □ A ■

 $\begin{array}{c} \mathbb{X} \equiv \rightarrow ~ \blacksquare ~ \Rightarrow ~ \mathbb{X} \equiv \\ \hline \mbox{Filter genes by IDG GPCRs} \\ \hline \mbox{Based on IDG understudied proteins list} \end{array}$

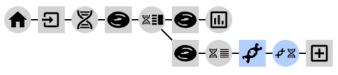
 $\mathbb{X} \equiv \rightarrow f_{x} \rightarrow (x)$

Given one type of gene ID for a set of genes, generate other types of gene IDs.

 $\mathbb{X}\equiv \rightarrow f_{\mathsf{X}} \rightarrow \texttt{AII}$ **MetGENE Reactions with GeneSet**Compute the MetGENE Reactions for a GeneSet

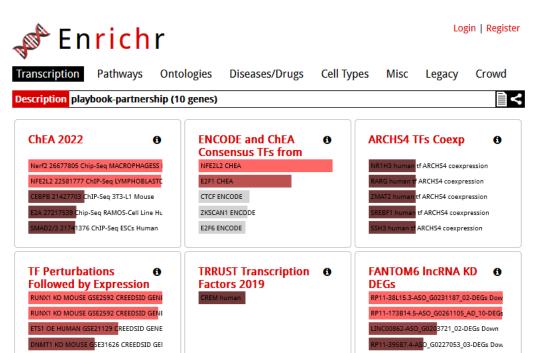
 $\mathbb{X}\equiv \rightarrow \mathbb{Q} \rightarrow \mathbb{X}\equiv$ **Filter genes by IDG Dark GPCRs** Based on IDG understudied proteins list

 $\mathbb{X} \equiv \rightarrow \mathbb{Q} \Rightarrow \mathbb{X} \equiv$ **Filter genes by IDG Ion Channels** Based on IDG understudied proteins list $\mathbb{X} \equiv \rightarrow f_{\mathsf{X}} \rightarrow \textcircled{1}$ Perform CTD with Gene Set using
KEGG
Get a CTD response for a set of genes using
KEGG


 $\mathbb{X} \equiv \longrightarrow \overset{\mathbb{X}}{\models \models \models} \longrightarrow \mathbb{C} \models \models$ **MetGENE Studies with GeneSet**Compute the MetGENE studies function for a
GeneSet

 $\& \equiv \rightarrow \heartsuit \rightarrow \& \equiv$ Filter genes by IDG Dark Ion Channels Based on IDG understudied proteins list

 $\mathbb{X}\equiv \rightarrow \mathbb{Q} \rightarrow \mathbb{X}\equiv$ **Filter genes by IDG Kinases** Based on IDG understudied proteins list $\mathbb{X} \equiv \rightarrow f_{\mathsf{X}} \rightarrow \textcircled{1}$ Perform CTD with Gene Set using
STRING
Get a CTD response for a set of genes using
STRING

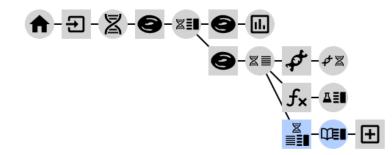

 $\mathbb{X} \equiv \rightarrow \mathbb{Q} \rightarrow \mathbb{X} \equiv$ **Filter genes by IDG Dark Kinases** Based on IDG understudied proteins list

 $\mathbb{X} \equiv \rightarrow f_{\mathsf{X}} \rightarrow (\mathsf{X})$ Suggest a visualization method
This would visualize the Gene Set. Provide a
description about what should be here.

Enrichr Enrichment Analysis

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set

♠ - Ð - Ѯ - Ø - ¤II - Ø - II Ø - ¤I - Ø - #Z f_× - 4II - E

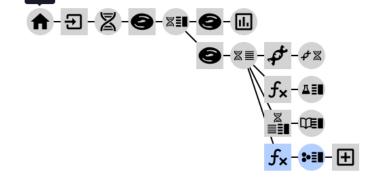

MetGENE Reactions with GeneSet

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [2] to identify relevant reactions. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-the-string-interaction-partners-of-the-protein-set 2. The Metabolomics Workbench, https://www.metabolomicsworkbench.org/

MetGENE Reactions

Gene KEGG Rxn	ld KEGG Rxn Name	KEGG Rxn Equation	
6120 R01529	D-Ribulose-5-phosphate 3-epimerase D-Ribulose 5-	-phosphate <=> D-Xylulose 5-phosphate	
Gene KEGG Rxn	Id KEGG Rxn Name	KEGG Rxn Equation	
22934 R01056	D-ribose-5-phosphate aldose-ketose-isomerase D-	Ribose 5-phosphate <=> D-Ribulose 5-phosphate	
KEGG Rxn Gene Id		KEGG Rxn Name	KEGG Rxn Equation
7086 R01067	D-Fructose 6-phosphate:D-glyceraldehyde-3-phosph	ate glycolaldehyde transferase	D-Fructose 6-phosphate + D-Glyceraldehyde 3-phosphate <=> D-Erythrose 4-phosphate + D-Xylulose 5-phosphate
7086 R01641	sedoheptulose-7-phosphate:D-glyceraldehyde-3-pho	sphate glycolaldehyde transferase	Sedoheptulose 7-phosphate + D-Glyceraldehyde 3-phosphate <=> D-Ribose 5-phosphate + D-Xylulose 5-phosphate
7086 R01830	beta-D-Fructose 6-phosphate:D-glyceraldehyde-3-ph	nosphate glycolaldehyde transferase	beta-D-Fructose 6-phosphate + D-Glyceraldehyde 3-phosphate <=> D-Erythrose 4-phosphate + D-Xylulose 5-phosphate
/086 R06590	c(sedoheptulose-7-phosphate:D-glyceraldehyde-3-pł glyceraldehyde-3-phosphate glycolaldehydetransfera	nosphate glycolaldehydetransferase;, sedoheptulose-7-phosphate:D- se)	Aminofructose 6-phosphate + D-Ribose 5-phosphate <=> Iminoerythrose 4-phosphate + Sedoheptulose 7-phosphate
Gene KEGG Rxn	ld KEGG Rxn Name	KEGG Rxn Equation	
9942 R01639	ATP:D-xylulose 5-phosphotransferase ATP + D-Xylu	lose <=> ADP + D-Xylulose 5-phosphate	

C M


MetGENE Studies with GeneSet

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [2] to identify relevant studies related to the genes.

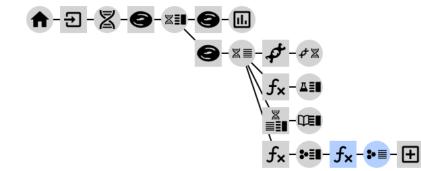
1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set 2. The Metabolomics Workbench, https://www.metabolomicsworkbench.org/

MetGENE Studies

Kegg Compound Id	Refmet Name	Study Ids
C00199	Ribulose 5-phosphate	ST002719, ST002584, ST002555, ST002505, ST001983, ST001842, ST001527, ST001167, ST001136, ST001135, ST001
00133	Ribulose 5-phosphate	ST000230, ST000087, ST000058
C00231	Xylulose 5-phosphate	ST002584, ST002328, ST002234, ST001167, ST001136, ST001135, ST000231, ST000230
		ST002805, ST002702, ST002584, ST002567, ST002536, ST002505, ST002323, ST002246, ST002234, ST002115, ST001
		ST001788, ST001780, ST001720, ST001692, ST001441, ST001420, ST001402, ST001398, ST001384, ST001335, ST001
C00117	Dilagan C. Jakanakata	ST001135, ST001133, ST001074, ST001039, ST001004, ST000923, ST000876, ST000842, ST000841, ST000839, ST000
C00117	Ribose 5-phosphate	

MetGENE Metabolites with GeneSet

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [Metabolomics Workbench, 2] to identify associated metabolites. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-the-


 STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-the string-interaction-partners-of-the-protein-set 2. https://www.metabolomicsworkbench.org/

MetGENE metabolites

Full table as a json file is available at MetGENE metabolites json file. The tables for the first 9 genes are shown below.

Gene KEGG_COMPOUND_ID	KEFIVIEI_INAIVIE	REGG_REACTIC		LINK
6120 C00199	Ribulose 5-phosphate	R01529	METSTAT	
6120 C00231	Xylulose 5-phosphate	R01529	METSTAT	
Gene KEGG_COMPOUND_I	D REFMET_NAME	KEGG_REACT	ON_ID METSTAT	LINK
22934 C00117	Ribose 5-phosphate	R01056	METSTAT	
22934 C00199	Ribulose 5-phosphate	e R01056	METSTAT	
Gene KEGG_COMPOUND_ID	REFMET_NAME	KEGG	REACTION_ID	METSTAT_LINK
7086 C00085	Fructose 6-phosphate	R01067		METSTAT

Game KEGG COMPOUND ID REEMET NAME KEGG REACTION IDMETSTAT LINK

Given the MetGENE Metabolites Table, generate a MetaboliteSet

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [Metabolomics Workbench, 2] to identify associated metabolites. Then, MetaboliteSet (REFMET names) is extracted from the table of MetGENE Metabolites for various genes. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set 2. https://www.metabolomicsworkbench.org/

♠-ᠽ-ཕ-⊜-▥

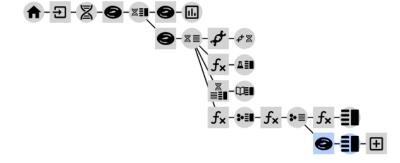
T Filter string...

⋡≣→⊜→≣

Perform MetENP analysis on a list of metabolites (no numeric data)

Given a list of metabolites as MetaboliteSet, Perform MetENP analysis on the list $\Rightarrow \equiv \rightarrow f_{\mathsf{X}} \rightarrow \blacksquare \blacksquare$ Extract metabolite set information
Extract information for a set of metabolites

	Metabolite		
1	Ribulose 5-phosphate		
2	Xylulose 5-phosphate		
3	Ribose 5-phosphate		
4	Fructose 6-phosphate		
5	Glyceraldehyde 3-phos		
б	Erythrose 4-phosphate		
7	Sedoheptulose 7-phos		
8	ATP		
9	ADP		


$f_{\mathsf{X}} - \mathfrak{i} = - f_{\mathsf{X}} - \mathfrak{i} = - f_{\mathsf{X}} - \mathfrak{i} = - +$

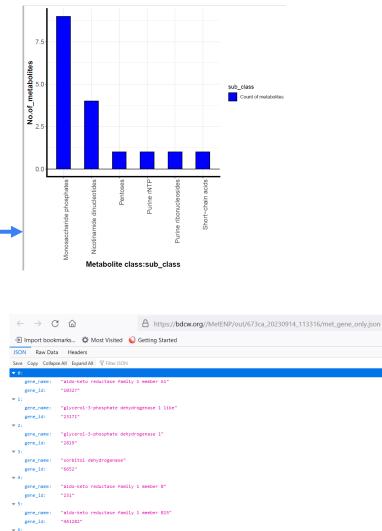
Extract metabolite set information

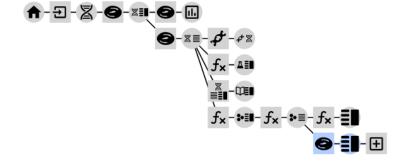
The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [Metabolomics Workbench, 2] to identify associated metabolites. Then, MetaboliteSet (REFMET names) is extracted from the table of MetGENE Metabolites for various genes. The metabolites were then searched in the Metabolomics Workbench [3] to extarct more information about the metabolites. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-thestring-interaction-partners-of-the-protein-set 2. https://www.metabolomicsworkbench.org/ 3. The Metabolomics Workbench, https://www.metabolomicsworkbench.org/

Metabolite Summary

Name	RefMet Name	PubChem CID Exact Mass	Formula	Super class	Main class	Sub class	InChl
	Ribulose 5-phosphate	230.0192	C5H11O8P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Xylulose 5-phosphate	230.0192	C5H11O8P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Ribose 5-phosphate	230.0192	C5H11O8P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Fructose 6-phosphate	260.0297	C6H13O9P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Glyceraldehyde 3-phosphate	169.9980	C3H7O6P	Organic acids	Short-chain acids	Short-chain acid	s
	Erythrose 4-phosphate	200.0086	C4H9O7P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Sedoheptulose 7-phosphate	290.0403	C7H15O10P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	ATP	506.9958	C10H16N5O13P3	8 Nucleic acids	Purine rNTP	Purines	
	Adenosine	267.0968	C10H13N5O4	Nucleic acids	Purine ribonucleosides	Purines	
	Xylulose	150.0528	C5H10O5	Carbohydrate	s Pentoses	Monosaccharide	s
	NAD+	663.1091	C21H27N7O14P2	2 Nucleic acids	Nicotinamide dinucleotides	Nicotinamides	
	NADH	665.1248	C21H29N7O14P2	2 Nucleic acids	Nicotinamide dinucleotides	Nicotinamides	
	NADPH	745.0911	C21H30N7O17P3	8 Nucleic acids	Nicotinamide dinucleotides	Nicotinamides	
	NADP+	743.0755	C21H28N7O17P3	3 Nucleic acids	Nicotinamide dinucleotides	Nicotinamides	
	6-Phosphogluconic acid	276.0246	C6H13O10P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	Glucose 6-phosphate	260.0297	C6H13O9P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s
	6-Phosphonoglucono-D-lacton	e 258.0141	C6H11O9P	Carbohydrate	s Monosaccharide phosphate	s Monosaccharide	s

Perform MetENP analysis on a list of metabolites (no numeric data)

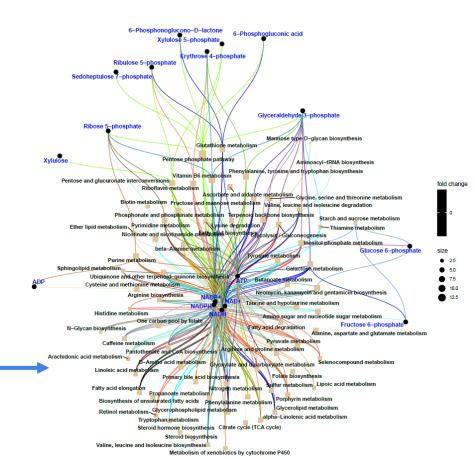

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [Metabolomics Workbench, 2] to identify associated metabolites. Then, MetaboliteSet (REFMET names) is extracted from the table of MetGENE Metabolites for various genes. For the given list of metabolites, MetENP analysis is carried out and the result (a list of output files) is displayed as a table for further exploration. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-the-string-interaction-partners-of-the-protein-set 2. https://www.metabolomicsworkbench.org/


No.

Description/URL

- 0 Plot of metabolite count
- 1 Metabolite class enrichment plot
- 2 Metabolite class enrichment table
- 3 Metabolite -> Reaction -> Pathway information
- 4 KEGG pathway enrichment
- 5 Metabolite KEGG pathway network
- 6 Metabolite pathway heatmap
- 7 Metabolite pathway dot plot
- 8 Orthology centric information on Metabolite related genes
- 9 Metabolite related gene names and Entrez IDs =
- 10 Reaction-Substrate information for the Metabolites/related genes
- 11 PPI for the metabolite related genes: txt
- 12 PPI for the metabolite related genes: json

In the future, these component results will be separated so that additional transformations can be applied.


Perform MetENP analysis on a list of metabolites (no numeric data)

The workflow starts with selecting RPE as the search term. For the given gene ID (SYMBOL), StringDB PPI was extracted using their API [1]. For the Given StringDB PPI, the list of nodes (GeneSet) is generated. The geneset was then searched in the Metabolomics Workbench [Metabolomics Workbench, 2] to identify associated metabolites. Then, MetaboliteSet (REFMET names) is extracted from the table of MetGENE Metabolites for various genes. For the given list of metabolites, MetENP analysis is carried out and the result (a list of output files) is displayed as a table for further exploration. 1. STRING api, https://string-db.org/cgi/help.pl?subpage=api%23getting-all-the-string-interaction-partners-of-the-protein-set 2. https://www.metabolomicsworkbench.org/

No. Description/URL

0 Plot of metabolite count

- 1 Metabolite class enrichment plot
- 2 Metabolite class enrichment table
- 3 Metabolite -> Reaction -> Pathway information
- 4 KEGG pathway enrichment
- 5 Metabolite KEGG pathway network
- 6 Metabolite pathway heatmap
- 7 Metabolite pathway dot plot
- 8 Orthology centric information on Metabolite related genes
- 9 Metabolite related gene names and Entrez IDs
- 10 Reaction-Substrate information for the Metabolites/related genes
- 11 PPI for the metabolite related genes: txt
- 12 PPI for the metabolite related genes: json

