
 
 
 
Use Cases:  
 

We will work with the following use cases, and we will refine and expand them as needed, often based on 
feedback from C2M2-CC and other DCCs. 
 
Use case 1 (shared with Gene working group): Maurya et al. recently published work on shear stress that causes 
atherosclerotic plaques in blood vessels where they identified temporally regulated networks that lead to aberrant 
phenotypes (Maurya et al.1). They identified KLF4, a canonical endothelial gene which is downregulated under 
disturbed flow leading to initiation of oxidative stress, inflammation, altered cell cycle and angiogenesis. Several 
cell types are involved in the formation of blood vessels and the authors wanted to explore the GTEx resource if 
the altered genes in this pathway are highly expressed in other cell types (tissues) associated with the blood 
vessel. Further, the authors had previously identified a lncRNA, called LEENE2, which was associated with the 
expression of KLF4 and eNOS. The authors wanted to explore if any exRNAs were a derivative of LEENE or 
other related RNA species. The authors had also investigated key transcriptional networks3 and wanted to 
explore if the key TFs were involved in association with H3K4Me3 or H3K27Me3 marks from ChIP-seq data 
collected by the ENCODE project. The authors also wanted to identify any druggable targets within the altered 
genes that they may be able to modulate with small molecules. In order to pose these questions, the key 
identifiers across the data resources are the genes involved. Hence, it is essential that there is a strategy to 
identify these genes in the CF data resources (satisfying findability, accessibility, and interoperability). A gene-
centric query across the DCCs and external resources will help find the information sought above. 
 
Use case 2a. A biomedical researcher is interested in exploring the adverse effects of a drug to treat breast 
cancer, by using animal and cell models and wishes to specifically seek if the treatment will affect physical activity 
of a patient post-treatment. The researcher also wishes to design key perturbation experiments to identify other 
targetable factors that already have FDA approved candidate molecules4. This is not an unusual “Use Case” 
scenario in biomedical research. There are several elements involved here – identification of relevant publicly 
available data, ensuring the context through available meta data, collation of all relevant data in a seamless 
manner (in most cases not involving complex software issues), query and analysis of the data to address the 
above questions, exploration of FDA approved drugs targeting key molecules identified above, and importantly 
presentation of the analysis in a manner that will facilitate the next experimental design steps. We present a 
scenario that will address the above. LINCS has proteomic, transcriptomic and epigenomic data on breast cancer 
cells treated with drugs, the Human Variome Project data has information on genetic perturbations, TCGA on 
the somatic mutations, MoTrPAC on data pertaining to physical activity, albeit in normal physiology, ENCODE 
on key regulatory aspects involving the epigenome, and data resources such as DrugBank provide the catalog 
of FDA approved drugs, their targets and mechanisms. What would be immensely valuable is an infrastructure 
that contains, a) a query system for discovering pertinent data, b) a system for virtually obtaining and collating 
such data, c) a workflow system for carrying out the analysis and generating potential hypotheses, and d) a 
system for presenting the results in a manner that would allow the researcher to interactively assess the results 
and develop potential hypotheses.  
Use case 2b. The same researcher now uses a breast cancer cell line BT474 to study resistance and sensitivity 
to the drug Trastuzamab. The researcher finds the cell lines behave differently when treated further with growth 
factors IGF, HGF and HRG (the known factors involved in tumorigenic transformation and wishes to identify 
mechanisms associated with sensitivity and resistance. There is relevant data present in LINCS, TCGA (from 
NCI), IDG, GTex, and 4DN. While there are tools that have the ability to integrate some of these data (such as 
LJP-BCNB and DEGenR), the are not readily accessible. Our workflow APIs developed in this base module and 
in the Playbook Partnership proposals will aid in the user identifying protein networks, transcriptional changes 
and transcription regulatory modules involved in differentiating sensitivity and resistance to the drug.  
 
Use case 3 A patient visits the cardiologist complaining of dizziness, chest pain, and shortness of breath. The 
cardiologist suspects ventricular tachycardia. It is confirmed by ECG. Since there is a familial history, the 
cardiologist genotypes the patient and identifies the R92W-TnT mutation5, a marker associated with cardiac 
hypertrophy. A colleague collects fibroblasts from the patient and transforms them via induced pluripotent stem 
cells into cardiomyocytes, followed by transcriptional studies. Down regulation of the SERCA2A gene and 



 
 
increased ROS production is observed. The cardiologist would like to design experiments to explore, preferably 
through their browser: i) whether or not their patient’s heart is hypertrophied; ii) whether a calcium channel 
blocker such as nifedipine6, 7, or a late sodium current blocker such as ranolazine8, 9, would be a better treatment; 
and iii) the appropriate personalized drug dose. As above, the principles are similar, namely, discovery of the 
data sources, collation and integrative analysis, and presentation of results in a biologist-friendly manner. 
TOPMED, a NHLBI resource in combination with a human variome database, HuBMaP, GTEx, IDG, and SPARC 
would have the pertinent data for analysis. 
 
Use case 4 (Shared with Clinical Metadata working group) A clinician researcher is reviewing a 52-year-old 
female Type II diabetes patient who has been treated for 2 years with metformin. She wishes to identify key 
genes/functions altered in patients with similar demographic and dietary profile (dbGaP, Framingham 
study/TOPMED data) as well as identify metabolite differences associated with physiological phenotypes in 
similar patients (NMDR). She also wishes to see consequences for cardiovascular conditions in such patients 
(Dallas Heart Study, TEDDY data, MoTrPAC). Discoverability of such data will depend critically on availability of 
appropriate clinical metadata associated with each of the data resources. 
 
Use case 5 (Shared with Clinical Metadata working group) A researcher who works on enchondromatoses in 
children is interested in identifying using family/trios information genomic variants in these subjects and seek if 
the variant is associated with Ollier disease associated with skeletal dysplasia. There is WGS data on these trios 
in Gabriella Miller Kids First resource (dbGaP). There are also gene expression data in GEO on zone specific 
gene expression patterns in articular cartilage on 4 normal human donors. The researcher would like to seek if 
the genes associated with variants (including sequences of trios) are expressed differentially in the GEO 
resource. The study would be meaningful if the associated metadata associated with age, clinical conditions and 
other related information are available. What metadata would enable the cross-mapping? Our base module and 
the ClOVoc partnership will use FHIR profiles, KGs and APIs developed here to answer such queries.  
 
New use cases in the cycle 2022-2023: 
 
Use case 6: Using CFDE data to understanding role of PNPLA3 in Nonalcoholic fatty liver disease (NAFLD): 
Patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene encodes for the protein adiponutrin, 
found in fat and liver cells. PNPLA3 regulates the development of adipocytes and the production and breakdown 
of fats (lipogenesis and lipolysis) in Metabolism and Glycerophospholipid biosynthesis. Diseases associated with 
PNPLA3 include Fatty Liver Disease and Nonalcoholic fatty liver disease (NAFLD)10-13. The spectrum of NAFLD 
includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these 
different stages, particularly NASH, is important for both potential reversibility and limitation of complications. 
Towards integrative analysis to identify PNPLA3 associated mechanisms participating in the progression of 
NAFLD, we believe data from various DCCs of the NIH Common Fund Data Ecosystem (CFDE) and other 
resources can be leveraged. We will leverage our experience in multiomics analysis on NAFLD data10. There, 
using linear discriminant analysis, we identified a panel of 20 plasma metabolites (glycerophospholipids, 
sphingolipids, sterols, etc.) that can be used to differentiate between NASH and steatosis. Our proposed 
approach is multipronged: 1) Identify data on PNPLA3 available at various DCCs (e.g., Metabolomics, GTEx, 
LINCS, ERCC (for variants information)), 2) starting with PNPLA3, find the interacting proteins using StringDB 
providing a protein-protein interaction (PPI) network, 3) find the drugs targeting these proteins (LINCS 
L1000KD2), 4) enrichments against various pathways, functions and diseases, in GTEx (resulting in a ranked 
list of tissue), and in ChEA and 5) find reactions, enzymes, metabolites and metabolomics studies related to the 
genes in the PPI network. ChEA will help us identify the transcription factors (TFs) that regulate the genes in the 
PPI network, from which we can further find other targets enriched in a specific tissue (e.g., liver in this case, 
using GTEx data). Enrichment of metabolites will help us focus on key metabolic pathways. In principle, some 
of the above steps can be repeated on combinations of gene lists. Following this comprehensive approach, we 
hope to gain a mechanistic understanding of how genomic variants in PNPLA3, eventually result in the 
dysregulated metabolism observed in NAFLD. We also hope to showcase how the data and tools from various 
CFDE DCCs and other resources may be utilized to study important diseases at a molecular- to functional- to 
mechanistic level. 
 

https://pathcards.genecards.org/card/metabolism
https://pathcards.genecards.org/card/metabolism
https://pathcards.genecards.org/card/glycerophospholipid_biosynthesis
https://www.malacards.org/card/fatty_liver_disease


 
 
Use case 7: Role of PPARG and LXR in diabetes: It is common for a biomedical researcher to investigate a 
candidate gene(s) implicated in a disease, to construct a disease model, understand its role in the causal 
mechanism/disease process, and identify therapeutic targets that can ameliorate the condition. This requires 
identifying and integrating multimodal datasets using facets common to the datasets and relevant to the disease, 
to validate the hypothesis and enable further discovery, such as identifying biomarkers, therapeutic agents and 
disease surveillance. The CFDE products (data, tools and services) and the underlying FAIR framework enable 
such an investigation. For instance, a bioinformatics analysis identified two genes, PPARG (Peroxisome 
Proliferator-Activated Receptor Gamma) and LXR (Liver X Receptor) as highly enriched and significant in type 
2 diabetes (T2D). A potential use case of CFDE resources may have the following components: 

● If the researcher wants to construct a cell model system to validate the role of PPARG and LXR, they 
could use GTEx resources to find the tissues that express these genes in abundance and select the ones 
that is relevant to the disease and easily accessible (e.g., for PPARG: subcutaneous adipocyte as 
opposed to omental or mammary adipocyte).  

● Further, they could use HuBMAP resources to find adipocyte-specific markers (ex: calbindin 2/calretinin 
and S100 calcium-binding protein B) to isolate the cell from subcutaneous tissue. Further, they could see 
the list of drugs affecting the gene from LINCS1000 (FDA-approved drugs/small molecules: both up-
regulating and down-regulating the gene), as both PPARG and LXR have been identified as potential 
drug targets in the treatment of T2D. Drugs that activate PPARG, such as thiazolidinediones, are used 
as insulin sensitizers. Similarly, LXR agonists improve glucose homeostasis and insulin sensitivity. 

● Genetic variants in PPARG and LXR have been associated with an increased risk of T2D. The 
researchers can find the genetic variants from ClinVar and assess someone's risk of developing T2D. 

● Both PPARG and LXR are involved in lipid metabolism, including lipid uptake, fatty acid oxidation, and 
adipogenesis. Therefore, the researchers could find deranged metabolites in T2D in the metabolomics 
workbench data and compare that with healthy individuals from MoTrPAC studies. This may help identify 
metabolic signatures of T2D and biomarkers for early diagnosis and disease surveillance. 

Use Case 8: Role of IDH1 in various cancers: The effects of IDH [isocitrate dehydrogenase (NADP(+))] 
mutations not only span epigenetic, differentiation and metabolic programmes, but are highly prevalent  across 
a variety of cancer types of different origins such as low-grade glioma and secondary glioblastoma, acute myeloid 
leukemia, cholangiocarcinoma, chondrosarcoma, sinonasal undifferentiated carcinoma and angioimmunoblastic 
T cell lymphoma14-16. They are known to occur early during tumorigenesis and are found to have uniform 
expression in cancer cells, thus making them ideal therapeutic targets. A biomedical researcher interested in 
investigating the role of IDH in cancer and examining its potential as a therapeutic target would be aided by the 
CFDE tools and portal, that will enable them to access information, both qualitative and quantitative, under one 
integrated platform. Here we envision a potential workflow connecting the gene IDH with various CFDE 
components in the context of cancer. For simplicity, let us consider the cytoplasmic form of IDH, the IDH1 gene, 
as a use case. 

● A possible first step would be to investigate which tissue types express IDH1 and can access expression 
data in tissue types of interest. This ability is provided by GTEx which enables the user to view tissue 
and sample statistics pertaining to IDH1. 

● Next, the user may be interested in looking at differential gene expression of IDH1 under various knock 
out conditions (cancer and normal) or potential drug targets associated with IDH1, which is provided by 
the LINCS resource. It provides differential expression signatures of IDH1 in RNA-seq like experiments 
and the user can also access statistics regarding drug perturbations (both up and down) associated with 
the gene. 

● Further, given that IDH1 is an isozyme that catalyzes the reversible oxidative decarboxylation of isocitrate 
to α-ketoglutarate (α-KG) while reducing NADP+ to NADPH, the CFDE resource MetGENE allows the 
user to access metabolomic studies, obtained from Metabolomics Workbench (MW) pertaining to IDH1 
via the pathways and reactions in which IDH1 participates, and the metabolites pertaining to those 
reactions. One can use the tool MetENP on MW studies to perform statistical analysis (cancer vs. normal) 
pertaining to the metabolites and carry out further interpretation such as functional enrichment and 
metabolite-gene association. 



 
 

● Genetic variants of IDH1 such as those with the mutations R132H, R132C, R132G, R132S and R132L 
are known to be sensitive to Ivosidenib, which inhibits D-2HG production. These can be studied using 
ClinVar. 

Thus, the CFDE suite of tools will enable biomedical researchers to access various resources under one 
dashboard enabling them to study the role of IDH1 in various cancers utilizing state-of-the-art omics data and 
approaches. 

Use Case 9: Alteration in energy metabolism in COVID-19 and its impact on diabetes: A recent research article 
established the correlation between elevated plasma glucose levels favoring SARS-CoV-2 infection and 
monocyte response via HIF-1a/Glycolysis dependent pathway17. A biomedical researcher, using CFDE data, 
could further verify it by examining the metabolic profile—especially the deranged glucose metabolism in patients 
with severe COVID-19 infection—using the dataset in Metabolomics Workbench (MW), specifically, data from 
the project 'PR001469- Integrated metabolic and inflammatory signatures associated with severity, fatality, and 
recovery of COVID-19’. Similarly, one can examine the similarities or differences in neutrophil metabolism during 
COVID-19 and compare it with that in monocytes with the study 'PR001600 Human neutrophil metabolomics’ 
(PR001600). Further, the dataset from the project 'PR001474 Serum metabolomics profiling identifies new 
predictive biomarkers for disease severity in COVID-19 patients’ (PR001474). will help develop a predictive 
model for disease severity given the coexisting condition of diabetes and its control status. Also, the dataset from 
the study 'ST001921- An Airway Organoid-Based Screen Identifies a Role for the HIF1α-Glycolysis Axis in 
SARS-CoV-2 Infection' (ST001921) can be used to further validate the role of HIF-1a in COVID-19 pathogenesis. 
Finally, one could leverage the IDG resource PHAROS to identify HIF-1a targets and develop/validate the 
hypothesis that anti-H1F-1a would suppress T-cell dysfunction, cytokine storm and monocyte-induced lung 
epithelial cell death. 
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